skip to main content


Search for: All records

Creators/Authors contains: "Porter, Claire"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Data-driven approaches to materials exploration and discovery are building momentum due to emerging advances in machine learning. However, parsimonious representations of crystals for navigating the vast materials search space remain limited. To address this limitation, we introduce a materials discovery framework that utilizes natural language embeddings from language models as representations of compositional and structural features. The contextual knowledge encoded in these language representations conveys information about material properties and structures, enabling both similarity analysis to recall relevant candidates based on a query material and multi-task learning to share information across related properties. Applying this framework to thermoelectrics, we demonstrate diversified recommendations of prototype crystal structures and identify under-studied material spaces. Validation through first-principles calculations and experiments confirms the potential of the recommended materials as high-performance thermoelectrics. Language-based frameworks offer versatile and adaptable embedding structures for effective materials exploration and discovery, applicable across diverse material systems.

     
    more » « less
  2. Computation-guided selection of dopants enables the transformation of Hg2GeTe4from intrinsic to degenerate carrier concentrations and the thermoelectric performance is assessed experimentally.

     
    more » « less
    Free, publicly-accessible full text available July 6, 2024
  3. ABSTRACT This paper reports on a demonstration of YAMZ (Yet Another Metadata Zoo) as a mechanism for building community consensus around metadata terms. The demonstration is motivated by the complexity of the metadata standards environment and the need for more user-friendly approaches for researchers to achieve vocabulary consensus. The paper reviews a series of metadata standardization challenges, explores crowdsourcing factors that offer possible solutions, and introduces the YAMZ system. A YAMZ demonstration is presented with members of the Toberer materials science laboratory at the Colorado School of Mines, where there is a need to confirm and maintain a shared understanding for the vocabulary supporting research documentation, data management, and their larger metadata infrastructure. The demonstration involves three key steps: 1) Sampling terms for the demonstration, 2) Engaging graduate student researchers in the demonstration, and 3) Reflecting on the demonstration. The results of these steps, including examples of the dialog provenance among lab members and voting, show the ease with YAMZ can facilitate building metadata vocabulary consensus. The conclusion discusses implications and highlights next steps. 
    more » « less
  4. Abstract. The Reference Elevation Model of Antarctica (REMA) is thefirst continental-scale digital elevation model (DEM) at a resolution ofless than 10 m. REMA is created from stereophotogrammetry with submeterresolution optical, commercial satellite imagery. The higher spatial andradiometric resolutions of this imagery enable high-quality surfaceextraction over the low-contrast ice sheet surface. The DEMs are registeredto satellite radar and laser altimetry and are mosaicked to provide acontinuous surface covering nearly 95 % the entire continent. The mosaicincludes an error estimate and a time stamp, enabling change measurement.Typical elevation errors are less than 1 m, as validated by thecomparison to airborne laser altimetry. REMA provides a powerful newresource for Antarctic science and provides a proof of concept forgenerating accurate high-resolution repeat topography at continentalscales.

     
    more » « less
  5. Diamond like semiconductors (DLS) have emerged as candidates for thermoelectric energy conversion. Towards understanding and optimizing performance, we present a comprehensive investigation of the electronic properties of two DLS phases, quaternary Cu 2 HgGeTe 4 and related ordered vacancy compound Hg 2 GeTe 4 , including thermodynamic stability, defect chemistry, and transport properties. To establish the thermodynamic link between the related but distinct phases, the stability region for both is visualized in chemical potential space. In spite of their similar structure and bonding, we show that the two materials exhibit reciprocal behaviors for dopability. Cu 2 HgGeTe 4 is degenerately p-type in all environments despite its wide stability region, due to the presence of low-energy acceptor defects V Cu and Cu Hg and is resistant to extrinsic n-type doping. Meanwhile Hg 2 GeTe 4 has a narrow stability region and intrinsic behavior due to the relatively high formation energy of native defects, but presents an opportunity for bi-polar doping. While these two compounds have similar structure, bonding, and chemical constituents, the reciprocal nature of their dopability emerges from significant differences in band edge positions. A Brouwer band diagram approach is utilized to visualize the role of native defects on carrier concentrations, dopability, and transport properties. This study elucidates the doping asymmetry between two solid-solution forming DLS phases Cu 2 HgGeTe 4 and Hg 2 GeTe 4 by revealing the defect chemistry of each compound, and suggests design strategies for defect engineering of DLS phases. 
    more » « less